Timing and Transport in 5G Fronthaul

Presented by: Idan Reshef
About Fibrolan

• Established in 1996
• HQ in Israel
 • Presence in US, Austria and Poland
 • Local partners worldwide
• Key areas of expertise:
 • Timing & Sync
 • Edge Transport
• Partnerships:
 • Vendors, System Integrators & Research Institutes
Overview
Architecture

- Typical 5G Fronthaul deployment
 - O-RAN configuration LLS-C3
 - In-band sync (typically O-RU)
 - OOB sync (typically O-DU)

- Benefits of LLS-C3
 - Simpler Timing integration
 - Higher accuracy
 - Flexibility & Scalability
 - High availability
Timing requirements: Backhaul vs Fronthaul

<table>
<thead>
<tr>
<th></th>
<th>Backhaul</th>
<th>Fronthaul</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bandwidth</td>
<td>Low (<1Gbps)</td>
<td>High (>6Gbps)</td>
</tr>
<tr>
<td>Transport</td>
<td>Typically L3</td>
<td>Typically L2</td>
</tr>
<tr>
<td>Time Error Target</td>
<td>1.5us</td>
<td>20-260ns</td>
</tr>
<tr>
<td>Timing Sensitivity</td>
<td>Medium</td>
<td>High</td>
</tr>
</tbody>
</table>
• PTP – Complete Timing signal (Frequency, Phase, ToD)
• SyncE – Frequency Stability, Short Convergence time, Longer Holdover
• Currently supported by some O-RU (mostly mmWave)
• Can be supported in Boundary and Transparent PTP nodes
Lessons learned
Use of ptp4l

- Commonly used in conjunction with phc2sys
- Performance is HW dependent (NIC, CPU, oscillator, etc.)
- Requires proper integration and configuration
 - Interface binding
 - Message Rate matching
 - Attribute mismatch (Domain, Step mode, DMAC, etc.)
- Internal Sync interruptions
 - From services like NTPd and Chronyd
 - When service not running continuously on the same core
 - Process priority
Some Interop issues encountered

• Timing Issues
 • PTP operating parameters: message rate, Domain, Step mode, etc.
 • PTP profile conversion
 • Non-Standard PTP implementations (e.g. Multicast, Unicast)
 • Partial SyncE support

• Transport issues
 • Low quality field infrastructure (e.g. fiber run)
 • SFP compatibility (e.g. ER SFPs in RU)
 • FEC support (25Gbps)
GNSS as a Timing source

- Proper installation (antenna, cables, arrestor, splitters)
- Receiver should be optimized for Timing
- Support for multi-constellation
- Single band vs. Dual band
- Consider spoofing and jamming
 - Susceptible to malicious or random interruptions
- Outages – oscillators benefits (OCXO, Rb)
Transport challenges

• Network effects on Timing
 • Traffic load – in case of congestion
 • QoS – PTP prioritization
 • Fronthaul must be fully PTP aware

• Cu SFPs block SyncE transmission
 • Creates different clock domains

• Asymmetric links
 • Long distance fibers (numerous splicing, patch panels)
 • WDM
 • Single fiber connections
Getting it right
How to do it right?

• Combined platform: PTP Grandmaster + Carrier Ethernet Switch
 • Support all O-RAN LLS configuration (C1, C2, C3 and C4)
 • Extensive monitoring options (Timing and Transport)
 • Flexible and diverse Timing interfaces (Ethernet, Serial, 1PPS, 10MHz)
 • Multiple profile support (simultaneously)
 • Comprehensive Source types (e.g. GNSS, PTP, ToD, etc.)

• The Falcon-RX

One platform, any architecture
Falcon-RX/G main features

- Switching fabric: 200G/FDX, non-blocking
- Dual, redundant, hot swappable PSUs, AC or DC
- Built-in Stratum 3E clock (OCXO)
- Rubidium oscillator expansion module
- Advanced switching and protection capabilities
- Unique SyncCenter capability for Timing source selection and prioritization
- Synchronous Ethernet
 - G.8261, G.8262, ESMC (G.8264)
- HW based 1588/PTP:
 - Grandmaster (integrated GNSS receiver)
 - Ordinary Clock (master, slave)
 - Transparent Clock (Class C/D)
 - Boundary Clock (Class C/D)
- TSN capabilities
- NTP server
Thank you!